

REVIEW

Brain metabolism in adult chronic hydrocephalus

Daniel Kondziella,*'[†] Ursula Sonnewald,[†] Mats Tullberg^{*},[‡] and Carsten Wikkelso^{*},[‡]

*Department of Neurology, Sahlgrenska University Hospital, Göteborg, Sweden †Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway ‡Institute of Neuroscience and Physiology, The Sahlgrenska Academy, Göteborg University, Göteborg, Sweden

Abstract

Normal pressure hydrocephalus (NPH) is the most frequent form of chronic hydrocephalus in adults. NPH remains underdiagnosed although between 5% and 10% of all demented patients may suffer from this disorder. As dementia is an increasing demographic problem, treatable forms such as in NPH have become a central issue in neurology. Despite the traditional perception of hydrocephalus being a disorder of disturbed CSF dynamics, in NPH metabolic impairment seems at least as important. So far, the only valid animal model of NPH is chronic adult kaolin hydrocephalus. In this model, opening of alternative CSF outflow pathways leads to normal or near-normal intracranial pressure and CSF outflow resistance. Yet, various metabolic disturbances cause ongoing ventricular enlargement and characteristic symptoms including cognitive decline and gait ataxia. Delayed hippocampal neuronal death, accumulation of beta-amyloid and disturbed cholinergic neurotransmission may contribute to memory dysfunction. Compromised periventricular blood flow, decreased dopamine levels in the substantia nigra and damaged striatal GABAergic interneurons may reflect basal ganglia symptoms. At least in human hydrocephalus cerebrovascular co-morbidity of the white matter plays an important role as well. It seems that in hydrocephalus from a certain 'point of no return' metabolic impairment becomes decoupled from CSF dynamics and, at least partly, self-sustained. This is probably the reason why despite restored CSF circulation by shunting many patients with chronic hydrocephalus still suffer from severe neurological deficits. The present paper offers a comprehensive review of the experimental and clinical data suggesting metabolic disturbances in chronic hydrocephalus.

Keywords: cerebral blood flow, cerebrospinal fluid, dementia, intracranial pressure, white matter.

J. Neurochem. (2008) 106, 1515-1524.

Chronic hydrocephalus can be defined as a disorder in which radiologically verified ventricular enlargement occurs together with normal or low-grade elevation of intracranial pressure (ICP; Edwards et al. 2004). This review will focus on normal pressure hydrocephalus (NPH), which is the most frequent form of chronic hydrocephalus in adults. NPH is either classified as idiopathic (INPH) or, when there is an obvious cause such as traumatic brain injury, as secondary (SNPH; Relkin et al. 2005). Ventriculomegaly arises despite unrestricted communication between the ventricular system and subarachnoidal space. Gait ataxia, cognitive disturbances, and urine incontinence develop (Blomsterwall et al. 1995, 2000; Tisell et al. 2005; Hellström et al. 2007). Mortality may be increased by 2.5 times (Malm et al. 2000; Tisell et al. 2006). NPH is more common than earlier estimated (Edwards et al. 2004). Up to 10% of all demented patients may have NPH (Hakim *et al.* 2001; Vale and Miranda 2002). A recent surveillance from Norway showed an INPH prevalence of $22/100\ 000$ inhabitants with an incidence of $5.5/100\ 000$ (Brean and Eide 2008). However, < 2 NPH patients in 100 000 inhabitants per year receive

Received January 23, 2008; revised manuscript received March 21, 2008; accepted April 10, 2008.

Address correspondence and reprint requests to Daniel Kondziella, MD, PhD, Department of Neurology, Sahlgrenska University Hospital, SE-41345 Göteborg, Sweden. E-mail: daniel.kondziella@vgregion.se

Abbreviations used: ADC, apparent diffusion coefficients; AQP4, aquaporin 4; CBF, cerebral blood flow; ICP, intracranial pressure; INPH, idiopathic normal pressure hydrocephalus; MRI, magnetic resonance imaging; MRS, magnetic resonance spectroscopy; NPH, normal pressure hydrocephalus; SAE, subcortical arteriosclerotic encephalopathy; SNPH, secondary normal pressure hydrocephalus.

surgery (Krauss and Halve 2004; Tisell et al. 2005). The discrepancy between high NPH incidence and low treatment frequency has been attributed to lack of awareness in physicians (Stein et al. 2006; Conn 2007). Symptoms often resemble those of other brain disorders such as subcortical arteriosclerotic encephalopathy (SAE, or Binswanger disease). Bilateral white matter changes and ventricular enlargement seen on magnetic resonance imaging (MRI) in SAE patients may be indistinguishable from findings in NPH (Tullberg et al. 2001, 2002). Furthermore, the available diagnostic tools have limited sensitivity and specificity and predict post-operative outcome often poorly. Diagnosis is still largely based on measuring CSF dynamics. The most common approaches include evaluation of CSF outflow resistance (Rout; Eklund et al. 2007) and of clinical improvement following temporary CSF drainage (Wikkelso et al. 1986; Marmarou et al. 2005). CSF diversion with a ventriculo-peritoneal or -artrial shunt device is the treatment of choice. All symptoms, including cognitive, may improve post-operatively (Larsson et al. 1994; Iddon et al. 2004). Short-term outcome is positive in roughly 80% of patients (Tisell et al. 2006), whereas long-term benefits are seen in only 26-60% (Malm et al. 2000; Savolainen et al. 2002; Tisell et al. 2006).

As dementia is an increasing demographic problem, reversible dementias such as in NPH will receive considerable interest in the future. Despite more than 40 years of research, our understanding of chronic hydrocephalus remains sparse. Have we focused too much on CSF dynamics and forgotten metabolic aspects of the disorder? This review summarizes the experimental and clinical data of brain metabolism in adult chronic hydrocephalus and outlines important areas for future research.

Evidence of metabolic disturbances in experimental hydrocephalus

Is there a valid animal model of NPH?

Normal pressure hydrocephalus is, as far as we know, a strictly human phenomenon. It seems therefore wise to consider the validity of animal models of hydrocephalus before reviewing the knowledge we have gained from them. Criteria for animal models include: (i) face validity (how well are human symptoms modeled?), (ii) causative validity (how well does the disease-inducing factor match current pathophysiological theories?), and (iii) predictive validity (how well does treatment applied to patients reverse symptoms in animals?). Disturbances of brain structure and metabolism in experimental hydrocephalus depend on several factors such as etiology, age of onset, CSF outflow resistance (Rout), ICP, progression and amount of ventricular enlargement and severity of mechanical stretching of periventricular structures. Consequently, different animal models of hydroceph

Fig. 1 Schematic depiction of pathophysiological mechanisms in kaolin-induced hydrocephalus. In acute hydrocephalus (yellow, left) 4 weeks after kaolin-treatment impairment of CSF dynamics dominates, but from week 6 ICP and Rout normalize because of opening of alternative CSF outflow pathways. Yet, increasingly important metabolic disturbances lead to ongoing ventricular enlargement and the characteristic clinical symptoms of chronic hydrocephalus (blue, right). It is therefore postulated that from a certain 'point of no return' (red circle, center) metabolic impairment becomes self-sustained and, at least partly, irreversible.

alus are difficult to compare. The largest part of literature on experimental hydrocephalus involves genetic models (Crews et al. 2004) and kaolin-induced hydrocephalus in neonatal or juvenile animals (Fukushima et al. 2003; Del Bigio 2004; Khan et al. 2006). This is not very relevant to NPH. However, adult chronic kaolin-induced hydrocephalus seems to satisfy face validity as an NPH model (Fig. 1). Adult rats with chronic kaolin hydrocephalus show cognitive impairment such as decreased learning and spatial memory (Del Bigio et al. 1997a,b; Del Bigio et al. 2002; Del Bigio et al. 2003; Egawa et al. 2002) and psychomotor symptoms including gait ataxia and bradykinesia comparable to NPH patients (Del Bigio et al. 1997a,b; Del Bigio et al. 2002; Del Bigio et al. 2003). Ventriculomegaly continues in chronic hydrocephalus 6 weeks after kaolin treatment despite normalizing Rout and ICP (Kondziella et al. 2002), which is in good agreement with human NPH. Additionally, MRI often shows a flow-void phenomenon similar to the one seen in NPH (Del Bigio et al. 1997a,b), and β-amyloid accumulates in hydrocephalic rat brain as it does in NPH patients (Klinge et al. 2006). The good predictive validity of the kaolin model has been established as well: shunting of hydrocephalic rats leads to significant clinical improvement (Del Bigio et al. 1997a,b; Del Bigio and Massicotte 2001) and attenuates biochemical disturbances (Tashiro et al. 1997a,b). As in NPH, the degree of ventriculomegaly does not predict the level of behavioral impairment (Del Bigio et al. 2003) nor does the regression of ventriculomegaly after shunting

	Cognitive disturbances	Gait ataxia, motor dysfunction	Urinary incontinence	Etiology	Shunt responsiveness
NPH	Yes	Yes	Yes	Idiopathic or secondary	Yes
Kaolin hydrocephalus	Yes	Yes	Not known	Secondary	Yes

Table 1	Clinical	features	of NPH	and	chronic	adult	kaolin	hydro	ocepł	nalus
---------	----------	----------	--------	-----	---------	-------	--------	-------	-------	-------

See text for details. NPH, normal pressure hydrocephalus.

necessarily correspond to the degree of clinical improvement (Del Bigio et al. 1997a,b). However, causative validity is obviously a drawback when it comes to modeling of INPH. Instillation of kaolin into the cisterna magna causes aseptic inflammation of the basal meninges, which obstructs the outlet foramina of the fourth ventricle. Non-communicative hydrocephalus develops. Low doses of intracisternal kaolin causing slower ventricular enlargement are probably preferable. In the acute phase 4 weeks after kaolin treatment ICP and Rout are highest, while 2 weeks later in the chronic phase ICP becomes normal and Rout declines (Kondziella et al. 2002). This is at least partly because of the establishment of compensatory CSF outflow pathways along spinal and cranial nerves (Brinker et al. 1998; Luedemann et al. 2002; Voelz et al. 2007). Thus, chronic kaolin-induced hydrocephalus may be an adequate model of SNPH only. However, we obviously have no means to create a model of INPH with high causative validity, as INPH still is idiopathic and our knowledge about the underlying causes so limited. For the time being we have to accept animal models with low causative validity and of these, adult rats with chronic kaolin hydrocephalus appear to be the best choice (Table 1).

Development and absorption of brain edema in adult kaolin hydrocephalus

Magnetic resonance imaging and magnetic resonance spectroscopy (MRS) enable non-invasive longitudinal monitoring of transformation from acute into chronic hydrocephalus and have been used in neonatal, juvenile and adult rats with kaolin hydrocephalus. If not explicitly stated otherwise, all cited studies in the following paragraphs involve *adult* kaolin hydrocephalus.

During acute kaolin hydrocephalus apparent diffusion coefficients (ADC) and T_2 values in the striatum and cortex decrease. This, together with reduced total water and impaired diffusion, is consistent with compression of gray matter secondary to a raise in ICP (Massicotte *et al.* 2000). In contrast, in white matter ADC values increase because of accumulation of free extracellular water and edema development. Cerebral blood flow (CBF) is unaltered in gray matter, but reduced in white matter (Massicotte *et al.* 2000). Interestingly, changes in CBF do not seem to correlate with ventricular size, T_1 , T_2 , or ADC values, indicating that other parameters, possibly including ICP, may be important. White

matter hypoperfusion may in addition to vasogenic extracellular edema lead to cytotoxic edema secondary to impaired cell energy metabolism (Massicotte et al. 2000), which is reflected by increased lactate levels detected by MRS (Braun et al. 1997, 1999). Release of the intracellular osmolyte taurine during acute hydrocephalus may temporarily compensate for cellular edema (Kondziella et al. 2002). However, this remains speculative as ADC values do not allow clear distinction between intracellular and extracellular water (Ebisu et al. 1993). During the chronic stage of kaolin hydrocephalus white matter edema gradually decreases (Braun et al. 1997, 1998, 1999), although the ventricles continue to expand up to 6 weeks after kaolin instillation or even longer (Braun et al. 1997; Kondziella et al. 2002). As discussed below, changes in gray and white matter CBF are important for metabolic derangement in the different stages of hydrocephalus development.

It can be concluded that MRI has convincingly demonstrated dynamic changes of water diffusion in the hydrocephalic brain. Increases in Rout and ICP in the acute phase of kaolin hydrocephalus explain the compression of gray matter, initial ventriculomegaly and subsequent white matter edema. Ventricular enlargement continues in chronic experimental hydrocephalus because of unknown reasons despite normal ICP. However, normalization of CSF dynamics (Kondziella et al. 2002) and alternative CSF outflow pathways (Luedemann et al. 2002; Voelz et al. 2007) probably contribute to the resolution of white matter edema. Moreover, yet speculative but intriguing suggestions stem from recent research on pediatric hydrocephalus involving aquaporin 4 (AQP4). This water channel permits bidirectional water transport across cell membranes (Verkman et al. 2006). Upregulation of AQP4 has been documented in juvenile hydrocephalus (Lehmann et al. 2004; Mao et al. 2006). In the hydrocephalic brain CSF is thought to move from the ventricular to the parenchymal extracellular space causing white matter edema (Hochwald 1985). Part of this CSF is cleared via a transparenchymal route into the cerebral microvasculature (Bloch et al. 2006; Mao et al. 2006; Shen et al. 2006). APQ4 may therefore play a role in both generation and resolution of hydrocephalic brain edema (Manley et al. 2000; Papadopoulos and Verkman 2005; Mao et al. 2006; Zador et al. 2007). Increased expression of AQP4 has been associated with spontaneously arrested

congenital hydrocephalus and development of alternative CSF absorption from the interstitial space into periventricular tissue capillaries (Shen *et al.* 2006). Lack of increased APQ4 expression in contrast has been related to hydrocephalus progression (Bloch *et al.* 2006). It must be borne in mind that none of the cited studies (Bloch *et al.* 2006; Mao *et al.* 2006; Shen *et al.* 2006) examined adult chronic kaolin hydrocephalus, but it seems obvious to suggest that the function of AQP4 in NPH is worth exploring. Reversed water transport via AQP4 into the vasculature may contribute to white matter edema resolution during the chronic phase of kaolin hydrocephalus.

Cerebral ischemia, lactate production, and neuronal damage in adult kaolin hydrocephalus

In both acute and chronic adult kaolin hydrocephalus ¹H MRS in vivo studies have shown increased lactate concentrations in voxels containing CSF and adjacent brain tissue (Braun et al. 1997, 1998, 1999). Lactate is the end product of anaerobic glycolysis and a sensitive marker of cerebral ischemia and hypoxia. It has been suggested that compromised periventricular CBF (Klinge et al. 2003) is followed by lactate accumulation within the ventricular system. CBF in acute kaolin hydrocephalus assessed by ¹⁴C iodoantipyrine autoradiography was decreased by 13-53% in cortex, hippocampus, and periventricular white matter, but only in the latter below the ischemic threshold (Klinge et al. 2003). Reduced CBF and cerebral ischemia in acute hydrocephalus probably result from increased ICP. When kaolin hydrocephalus becomes chronic, CBF is restored in hippocampus and cortex, but remains slightly decreased in the periventricular region (Klinge et al. 2003). As ICP normalizes (Kondziella et al. 2002) and as ventricular size is not correlated with lactate levels (Braun et al. 1999) and only loosely with periventricular CBF (Klinge et al. 2003), other still unknown mechanisms are necessary to explain the decreased periventricular CBF and lactate production in chronic hydrocephalus. At the stage of greatest ventricular enlargement during chronic hydrocephalus CBF is already normalizing (Klinge et al. 2003). Interestingly, simultaneous ³¹P MRS revealed no changes in high-energy phosphate metabolism or pH (Braun et al. 1999). The findings from ¹H and ³¹P MRS may seem contradictory at first, but could be explained by differences in voxel positions, macrophageinduced lactate production or, most noteworthy, by the assumption that in mild ischemia lactate production occurs before levels of adenosine triphosphate and phosphocreatine fall (Sutton et al. 1987).

In both acute and chronic kaolin hydrocephalus ¹H MRS revealed decreased ratios of *N*-acetyl aspartate/choline and total creatine/choline, implicating neuronal injury or functional impairment respectively changes in membrane phospholipid metabolism as seen in myelin damage and gliosis (Braun *et al.* 1997, 1999). It should be noted that these

studies were hampered by the fact that only one large, single voxel and a weak 4.7 T magnet were used, which made it neither possible to clearly distinguish between metabolite levels of CSF and brain parenchyma nor to quantify metabolic disturbances in more confined brain regions. However, neuronal impairment was confirmed by immunohistochemistry revealing increased immunoreactivity for nitric oxide synthase in cortical and hippocampal neurons 2 weeks after kaolin treatment, which suggested an early global neuronal ischemic response (Klinge et al. 2003). At 4 weeks, when ICP and Rout reach maximal levels (Kondziella et al. 2002), the most salient finding was an increase in neurofilament staining of the periventricular white matter, consistent with reactive axonal changes secondary to mechanical stretching (Klinge et al. 2003). In line with this, calcium-mediated proteolytic white matter damage has been detected in acute kaolin hydrocephalus (Del Bigio 2000). In chronic hydrocephalus, periventricular immunoreactivity was no longer apparent. In contrast, the CA1 hippocampus subfield displayed a strong increase of nitric oxide synthase immunostaining and a loss of neurofilament reactivity, suggesting cytoskeletal neuronal injury and the onset of reactive dendritic and axonal changes (Grady et al. 1993). In the CA3 subfield increased staining of neurofilament and synaptophysin were noticed. As hippocampal CBF at that time was already normal and never had been below the ischemic threshold, the authors concluded that these findings were compatible with delayed neuronal death in the hippocampus of chronic hydrocephalic rats (Klinge et al. 2003). Selective and delayed neuronal injury of hypoxia-sensitive structures such as the hippocampus also occurs in other brain disorders (Kirino 2000). Delayed hippocampal neuronal injury might indeed be an intriguing explanation for some of the dementia observed in NPH patients (Hellström et al. 2007).

Disturbances of neurotransmitter metabolism and glialneuronal interactions in adult kaolin hydrocephalus

Neurotransmitter disturbances in adult kaolin hydrocephalus are complex and include cholinergic (Tashiro et al. 1997a,b; Egawa et al. 2002), dopaminergic (Miwa et al. 1982; Tashiro et al. 1997a; Del Bigio et al. 1998), serotonergic (Del Bigio et al. 1998), noradrenergic (Miwa et al. 1982; Egawa et al. 2002), glutamatergic and GABAergic (Tashiro et al. 1997b; Kondziella et al. 2002, 2003; 2008 unpublished results) systems. Changes have been described in cerebellum (Kondziella et al. 2002), basal ganglia (Tashiro et al. 1997a,b), hypothalamus, mesencephalon, pons, medulla oblongata (Tashiro et al. 1997a,b; Del Bigio et al. 1998; Kondziella et al. 2002, 2003; 2008 unpublished results), nucleus caudatus (Miwa et al. 1982), hippocampus (Egawa et al. 2002) and cortex (Miwa et al. 1982; Del Bigio et al. 1998, Egawa et al. 2002 and Kondziella et al. 2002, 2003; 2008 unpublished results). Some of the reported neurotransmitter decreases may be attributed to damage of related axonal projection systems, whereas accumulation of metabolites because of reduced CSF clearance may explain some of the increases. Decreased hypothalamic and mesencephalic dopamine levels (Del Bigio et al. 1998), especially in the substantia nigra (Tashiro et al. 1997a), together with damaged striatal GABAergic interneurons (Tashiro et al. 1997a) may reflect Parkinsonian symptoms in NPH. Progressive injury to cholinergic systems (Tashiro et al. 1997a,b; Egawa et al. 2002) in combination with the above cited delayed neuronal death in hippocampus (Klinge et al. 2003) may contribute to hydrocephalic dementia. Disturbances of serotonergic (Del Bigio et al. 1998) and noradrenergic (Miwa et al. 1982; Egawa et al. 2002) systems could impair mood and long-term potentiation required for learning (Bliss et al. 1983). As a general rule, transmitter disturbances tend to increase in chronic adult kaolin hydrocephalus suggesting development of structural neuronal damage (Tashiro et al. 1997a; Klinge et al. 2002; Kondziella et al. 2002, 2003), but disturbances may be functional in acute hydrocephalus. In some cases biochemical and behavioral changes are rapidly reversible by surgical treatment (Tashiro et al. 1997a).

Interplay between astrocytes and neurons are crucial for energy metabolism (Pellerin 2005) and information signaling (Verkhratsky and Toescu 2006). Gial-neuronal interactions in experimental hydrocephalus have recently been reviewed (Sonnewald and Kondziella 2003). Whereas in the acute stage 2 weeks after kaolin-injection changes of amino acid levels were minimal, in chronic hydrocephalus glutamate and glutamine were decreased in the cerebellum and glutamine was increased in the cerebrum. As glutamine synthesis in the brain is an exclusively glial process (Norenberg and Martinez-Hernandez 1979), increased cerebral glutamine can suggest reactive gliosis (Kondziella et al. 2002). Altered astrocytic glutamate handling was also confirmed in another study, which examined label incorporation in neurotransmitter amino acids and other compounds in kaolin hydrocephalus using ¹³C MRS (Kondziella et al. 2003). With this method it is possible to study astrocytic and neuronal metabolism simultaneously (Sonnewald and Kondziella 2003). In kaolin hydrocephalus labeling of most amino acids derived from neuronal metabolism was largely unchanged, whereas labeling from astrocytic metabolism was affected (Kondziella et al. 2003). Four weeks after kaolin installation cerebral transport of astrocytic glutamine to glutamatergic neurons was clearly impaired, suggesting disturbed glial-neuronal interactions. Only in chronic hydrocephalus neuronal glutamatergic metabolism became affected as well (Kondziella et al. 2003). Using the same animal model, glial-neuronal injury has also been reported by Klinge et al. (2002) who showed that in the acute stage expression of selected glial and neuronal enzymes increased, whereas in chronic hydrocephalus sustained changes in structural proteins occurred.

Evidence of metabolic disturbance in human NPH

Although the precise mechanisms remain largely unknown it is believed that initial ventricular enlargement in NPH is due to disturbed CSF absorption into the venous blood. A mild temporary increase in ICP is generally seen, but ventriculomegaly may also be associated with increased amplitude of intracranial pulsatile pressure alone (Di Rocco et al. 1979). As force equals pressure multiplied by area, ventricular pressure tends to normalize with expanding ventricles (Hakim and Adams 1965). Transcapillary CSF absorption in the periventricular white matter and absorption via spinal nerves into the lymphatic system may contribute to normalization of ICP (Deo-Narine et al. 1994; Edsbagge et al. 2004), but also these mechanisms are still very unclear. Pathologically the periventricular tissue is characterized by interstitial edema, ependyma disruption, microvascular infarctions, gliosis, and neuronal degeneration (Weller et al. 1971; Akai et al. 1987). Injury to neurons may result from various mechanisms such as mechanical stretching of periventricular tissue by the enlarging ventricles and disturbed elimination of metabolic end products because of parenchymal edema, impairment of the blood brain barrier and reduced CSF turnover.

Evidence for metabolic disturbance in NPH comes from neuroimaging studies of CBF, MRS of neuronal and glial function and analysis of CSF markers of brain damage. Single photon emission computed tomography and positron emission tomography studies have shown a global reduction of CBF (Owler and Pickard 2001). In addition, regional CBF is decreased in the frontal lobe, hippocampus (Larsson et al. 1994), thalamus, basal ganglia (Owler et al. 2004) and periventricular white matter (Corkill et al. 2003; Momjian et al. 2004). CBF is maximally reduced periventricularly and gradually increases towards the subcortical white matter and cortex. The decrease in CBF in the thalamus, basal ganglia and white matter correlates with changes in CSF pressure (Owler et al. 2004). In line with this, reduced oxygen metabolism in the basal ganglia, possibly contributing to motor symptoms, has been described in NPH (Miyamoto et al. 2007). Disturbances of CBF and oxygen metabolism suggest chronic ischemia in NPH, which is reflected by the detection of lactate in some, but not all, studies. Microdialysis revealed increased lactate concentrations and anaerobic glycolysis in periventricular white matter (Agren-Wilsson et al. 2003). Another microdialysis study showed that a sudden increase of ICP in NPH patients acutely impaired periventricular white matter energy metabolism, which was completely reversible when ICP was reduced again (Agren-Wilsson et al. 2005). However, normal lactate levels in the periventricular tissue and CSF of NPH were found in one MRS studies (Braun et al. 2003). These contradicting findings may either be explained by methodical limitations and the very heterogenous patient group (Braun et al. 2003) or, more likely, by the assumption that only a subset of NPH patients has increased lactate levels. Indeed, normal cerebrovascular autoregulation without compromised energy metabolism may be characteristic for NPH patients without significant cerebrovascular co-morbidity or white matter lesions on MRI (Tullberg et al. 2002). Conversely, the presence of lactate and impaired cerebrovascular autoregulation in other NPH patients may be explained by the high degree of cerebrovascular co-morbidity in both SNPH and INPH (Czosnyka et al. 2002; Haubrich et al. 2007). In these patients white matter lesions on MRI associated with cerebrovascular disease are more common than in agematched controls (Tullberg et al. 2002). Moreover, they often show evidence of co-existing cerebrovascular disorder at biopsy (Bech et al. 1997; Bech-Azeddine et al. 2007) and of hypertensive encephalopathy at autopsy (Akai et al. 1987; Newton et al. 1989). The frequent co-existence of cerebrovascular disease and NPH constitutes a major clinical challenge, but seems important to the pathophysiology of chronic hydrocephalus and will be discussed further below.

A number of CSF biomarkers such as tumor-necrosis factor (Tarkowski et al. 2003), tau protein, amyloid beta 42 (Agren-Wilsson et al. 2007), sulfatide (Tullberg et al. 2000), and neurofilament triple protein (Tullberg et al. 1998) are promising diagnostic markers for chronic hydrocephalus (Tarnaris et al. 2006). Sulfatide is a marker for demyelinisation, differentiating between irreversible and reversible tissue damage in NPH (Tullberg et al. 2000). Neurofilament protein, phospho-tau, and amyloid beta 42 in combination may distinguish between INPH, SAE, and healthy elderly controls (Agren-Wilsson et al. 2007). Increased turnover or accumulation of neurofilament protein and other structural proteins in axons may lead to release of these metabolites into the ventricular CSF which therefore serve as markers of neuronal injury (Agren-Wilsson et al. 2007). Likewise, probably as a result of global neuronal dysfunction, neuropeptides in CSF such as delta-sleep-inducing peptide, peptide YY and somatostatin, corticotropin-releasing factor are decreased in NPH (Wikkelso et al. 1991; Poca et al. 2001).

Restoration of CSF circulation by a shunt device or endoscopic third ventriculostomy not only leads to clinical improvement but also to normalization of many metabolic parameters. Thus, in the mesencephalon, hippocampus, frontal, and parietal lobes CBF is restored after shunting (Mamo et al. 1987; Larsson et al. 1994; Owler and Pickard 2001; Tullberg et al. 2004). Post-operative normalization of CSF biomarkers suggests a restitution of axonal function (Tullberg et al. 1998, 2000 and Tullberg et al. 2007). Reduced ventricular CSF tau indicates that cortical neuronal function improves after surgery (Agren-Wilsson et al. 2007: Tullberg et al. 2007). Furthermore, increased N-acetyl aspartate/Cr values are related to improved cognition (del Mar Matarín et al. 2007). Also neuropeptide levels (Wikkelso et al. 1991; Poca et al. 2001), monoaminergic neurotransmission (Malm et al. 1991) and glucose metabolism (Agren-Wilsson et al. 2003) increase following CSF drainage or shunting.

Although human studies strongly support the concept of hydrocephalus being a disorder of altered CSF dynamics, various metabolic disturbances and frequent cerebrovascular co-morbidity, our knowledge remains superficial. Ventriculomegaly per se is insufficient to explain the clinical symptoms of chronic hydrocephalus (Table 2). Unchanged post-operative ventriculomegaly does not exclude significant clinical improvement (Fukuhara et al. 2000). Conversely, despite decreasing ventricular size after shunting, often severe cognitive and motor deficits remain (Malm et al. 2000; Savolainen et al. 2002; Tisell et al. 2006). Much attention has therefore been paid to the possible association of NPH with Alzheimer and SAE (Silverberg et al. 2003; Edwards et al. 2004; Bech-Azeddine et al. 2007). In the elderly both production and absorption of CSF is decreased (Edwards et al. 2004) and CSF outflow resistance is increased (Albeck et al. 1998; Czosnyka et al. 2001). Increased Rout may result from impaired clearance via alternative CSF outflow pathways secondary to enhanced venous pressure (Rubenstein 1998), capillary thickening because of amyloid deposition (Zekry et al. 2003) and leptomeningeal fibrosis (Bech et al. 1997; Albeck et al. 1998). Reduced CSF turnover possibly leads to decreased clearance of neurotoxic substances such as β-amyloid, tauprotein, and pro-inflammatory cytokines (Kudo et al. 2000;

Table 2	CSF d	ynamics	and MRI	phenomenology	y in NPH	and chronic	adult kaoli	n hydrocephalus
---------	-------	---------	---------	---------------	----------	-------------	-------------	-----------------

	ICP	Rout	Ventricular enlargement	MRI flow void	CSF outflow pathways	Periventricular edema	WM hyperintensities
NPH	Normal (near)	Elevated (slightly)	Yes	Common	Opening of alternative pathways	Yes	Yes
Kaolin hydrocephalus	Normal (near)	Elevated (slightly)	Yes	Common	Opening of alternative pathways	Yes (resolving)	No

See text for details. ICP, intracranial pressure; MRI, magnetic resonance imaging; NPH, normal pressure hydrocephalus; Rout, CSF outflow resistance; WM, white matter.

	Neurotransmitter levels	Periventricular CBF	CSF biomarkers	¹ H MRS	Astrocytic function	Delayed neuronal death	β -amyloid accumulation
NPH	Various changes	Decreased	Various changes	NAA↓ Cho↑	Probably disturbed	Not known	Yes
Kaolin hydrocephalus	Various changes	Decreased	Not known	NAA↓ Cho↑	Disturbed	Yes	Yes

Table 3 Brain metabolism in NPH and chronic adult kaolin hydrocephalus

See text for details. CBF, cerebral blood flow; Cho, choline; ¹H MRS, proton magnetic resonance spectroscopy; NAA, *N*-acetyl aspartate; NPH, normal pressure hydrocephalus.

Silverberg et al. 2003; Tarkowski et al. 2003; Tisell et al. 2004). Accumulation of parenchymal β-amyloid and agerelated loss of neuroprotective mechanisms (Dröge and Schipper 2007) may contribute to cognitive deterioration seen in elderly patients with decompensated chronic hydrocephalus. Indeed, β-amyloid accumulation because of decreased CSF clearance may also explain the high cooccurrence of Alzheimer-like changes in the cortex of NPH patients (Del Bigio et al. 1997a,b; Golomb et al. 2000; Savolainen et al. 1999) and of rats with chronic hydrocephalus (Klinge et al. 2006). This finding has led to speculations whether Alzheimer disease and NPH may just be the extremes in a cluster of disorders characterized by a continuum of CSF circulatory failure with subsequent neurodegeneration (Silverberg et al. 2003). As NPH also has a strong relation to cerebrovascular disorders (Boon et al. 1999; Tullberg et al. 2001) and NPH-related dementia often is of the subcortical type (Hellström et al. 2007), it seems obvious to speculate that SAE or Binswanger disease belongs to this cluster of neurodegenerative disorders as well (Tullberg et al. 2002). Consequently, it has been suggested that shunting in SAE (Tullberg et al. 2002) and even Alzheimer disease (Edwards et al. 2004) may be worth exploring (Table 3).

Synopsis

Establishment of alternative CSF outflow pathways into spinal and cranial nerves probably initiates the transformation from acute into chronic kaolin hydrocephalus (Fig. 1). In addition, transparenchymal water transport into periventricular capillaries supports CSF clearance in both experimental and clinical hydrocephalus. Whether or not the membrane waterchannel APQ4 plays a role in this respect needs to be addressed by future studies. MRI has clearly demonstrated continuing ventriculomegaly in chronic experimental hydrocephalus, despite normalization of CBF, Rout and ICP and resolution of white matter edema. Despite the fact that CBF is reduced only temporarily below the ischemic threshold and only in the white matter, at least in experimental hydrocephalus delayed neuronal death occurs in the hypoxia-sensitive hippocampus and may contribute to hydrocephalic dementia. Impairment of cholinergic neurons and accumulation of β-amyloid probably adds to cognitive decline and is part of a complex derangement of various neurotransmitter systems including monoaminergic metabolites and amino acids. Also glial-neuronal interactions and astrocytic handling of glutamate seem disturbed. Early shunting may reverse or ameliorate metabolic and behavioral alterations in experimental and human hydrocephalus by preventing transformation from functional to structural damage. It can be concluded that in chronic hydrocephalus increasing metabolic impairment leads to ongoing ventricular enlargement and characteristic clinical symptoms. We therefore hypothesize that from a certain 'point of no return' metabolic disturbances become decoupled from CSF dynamics and, at least partly, self-sustained (Fig. 1). This is probably the reason why despite restored CSF circulation by shunting many patients with chronic hydrocephalus still suffer from severe neurological deficits.

References

- Agren-Wilsson A., Roslin M., Eklund A., Koskinen L. O., Bergenheim A. T. and Malm J. (2003) Intracerebral microdialysis and CSF hydrodynamics in idiopathic adult hydrocephalus syndrome. *J. Neurol. Neurosurg. Psychiatry* 74, 217–221.
- Agren-Wilsson A., Eklund A., Koskinen L. O., Bergenheim A. T. and Malm J. (2005) Brain energy metabolism and intracranial pressure in idiopathic adult hydrocephalus syndrome. *J. Neurol. Neurosurg. Psychiatry* 76, 1088–1093.
- Agren-Wilsson A., Lekman A., Sjoberg W., Rosengren L., Blennow K., Bergenheim A. T. and Malm J. (2007) CSF biomarkers in the evaluation of idiopathic normal pressure hydrocephalus. *Acta Neurol. Scand.* **116**, 333–339.
- Akai K., Uchigasaki S., Tanaka U. and Komatsu A. (1987) Normal pressure hydrocephalus. Neuropathological study. *Acta Pathol. Jpn.* 37, 97–110.
- Albeck M. J., Skak C., Nielsen P. R., Olsen K. S., Børgesen S. E. and Gjerris F. (1998) Age dependency of resistance to cerebrospinal fluid outflow. *J. Neurosurg.* 89, 275–278.
- Bech R. A., Juhler M., Waldemar G., Klinken L. and Gjerris F. (1997) Frontal brain and leptomeningeal biopsy specimens correlated with cerebrospinal fluid outflow resistance and B-wave activity in patients suspected of normal-pressure hydrocephalus. *Neurosurgery* 40, 497–502.

- Bech-Azeddine R., Høgh P., Juhler M., Gjerris F. and Waldemar G. (2007) Idiopathic normal-pressure hydrocephalus: clinical comorbidity correlated with cerebral biopsy findings and outcome of cerebrospinal fluid shunting. J. Neurol. Neurosurg. Psychiatry 78, 157–161.
- Bliss T. V., Goddard G. V. and Riives M. (1983) Reduction of long-term potentiation in the dentate gyrus of the rat following selective depletion of monoamines. J. Physiol. 334, 475–491.
- Bloch O., Auguste K. I., Manley G. T. and Verkman A. S. (2006) Accelerated progression of kaolin-induced hydrocephalus in aquaporin-4-deficient mice. J. Cereb. Blood Flow Metab. 26, 1527–1537.
- Blomsterwall E., Bilting M., Stephensen H. and Wikkelso C. (1995) Gait abnormality is not the only motor disturbance in normal pressure hydrocephalus. *Scand. J. Rehabil. Med.* 27, 205–209.
- Blomsterwall E., Svantesson U., Carlsson U., Tullberg M. and Wikkelso C. (2000) Postural disturbance in patients with normal pressure hydrocephalus. *Acta Neurol. Scand.* **102**, 284–291.
- Boon A. J., Tans J. T., Delwel E. J., Egeler-Peerdeman S. M., Hanlo P. W., Wurzer H. A. and Hermans J. (1999) Dutch Normal-Pressure Hydrocephalus Study: the role of cerebrovascular disease. *J. Neurosurg.* **90**, 221–226.
- Braun K. P., Dijkhuizen R. M., de Graaf R. A., Nicolay K., Vandertop W. P., Gooskens R. H. and Tulleken K. A. (1997) Cerebral ischemia and white matter edema in experimental hydrocephalus: a combined MRI and MRS study. *Brain Res.* **757**, 295–298.
- Braun K. P., de Graaf R. A., Vandertop W. P., Gooskens R. H., Tulleken K. A. and Nicolay K. (1998) In vivo 1H MR spectroscopic imaging and diffusion weighted MRI in experimental hydrocephalus. *Magn. Reson. Med.* 40, 832–839.
- Braun K. P., van Eijsden P., Vandertop W. P., de Graaf R. A., Gooskens R. H., Tulleken K. A. and Nicolay K. (1999) Cerebral metabolism in experimental hydrocephalus: an in vivo ¹H and ³¹P magnetic resonance spectroscopy study. *J. Neurosurg.* **91**, 660–668.
- Braun K. P., Gooskens R. H., Vandertop W. P., Tulleken C. A. and van der Grond J. (2003) 1H magnetic resonance spectroscopy in human hydrocephalus. J. Magn. Reson. Imaging 17, 291–299.
- Brean A. and Eide P. K. (2008) Prevalence of probable idiopathic normal pressure hydrocephalus (iNPH) in a Norwegian population. *Acta Neurol. Scand.* (in press).
- Brinker T., Beck H., Klinge P., Kischni B., Oi S. and Samii M. (1998) Sinusoidal intrathecal infusion for assessment of CSF dynamics in kaolin-induced hydrocephalus. *Acta Neuorchir.* 140, 1069–1075.
- Conn H. O. (2007) Normal pressure hydrocephalus. *Clin. Med.* **7**, 416. Corkill R. G., Garnett M. R., Blamire A. M., Rajagopalan B., Cadoux-
- Hudson T. A. and Styles P. (2003) Multi-modal MRI in normal pressure hydrocephalus identifies pre-operative haemodynamic and diffusion coefficient changes in normal appearing white matter correlating with surgical outcome. *Clin. Neurol. Neurosurg.* 105, 193–202.
- Crews L., Wyss-Coray T. and Masliah E. (2004) Insights into the pathogenesis of hydrocephalus from transgenic and experimental animal models. *Brain Pathol.* 14, 312–316.
- Czosnyka M., Czosnyka Z. H., Whitfield P. C., Donovan T. and Pickard J. D. (2001) Age dependence of cerebrospinal pressure–volume compensation in patients with hydrocephalus. *J. Neurosurg.* 94, 482–486.
- Czosnyka Z. H., Czosnyka M., Whitfield P. C., Donovan T. and Pickard J. D. (2002) Cerebral autoregulation among patients with symptoms of hydrocephalus. *Neurosurgery* 3, 526–532.
- Del Bigio M. R. (2000) Calcium-mediated proteolytic damage in white matter of hydrocephalic rats? J. Neuropathol. Exp. Neurol. 59, 946–954.
- Del Bigio M. R. (2004) Cellular damage and prevention in childhood hydrocephalus. *Brain Pathol.* **14**, 317–324.

- Del Bigio M. R. and Massicotte E. M. (2001) Protective effect of nimodipine on behavior and white matter of rats with hydrocephalus. *J. Neurosurg.* 94, 788–794.
- Del Bigio M. R., Crook C. R. and Buist R. (1997a) Magnetic resonance imaging and behavioral analysis of immature rats with kaolininduced hydrocephalus: pre- and postshunting observations. *Exp. Neurol.* 148, 256–264.
- Del Bigio M. R., Kanfer J. N. and Zhang Y. W. (1997b) Myelination delay in the white matter of immature rats with kaolin-induced hydrocephalus is reversible. *J. Neuropathol. Exp. Neurol.* 56, 1053–1066.
- Del Bigio M. R., Bruni J. E. and Vriend J. P. (1998) Monoamine neurotransmitters and their metabolites in the mature rabbit brain following induction of hydrocephalus. *Neurochem. Res.* 23, 1379– 1386.
- Del Bigio M. R., Wang X. and Wilson M. J. (2002) Sodium channelblocking agents are not of benefit to rats with kaolin-induced hydrocephalus. *Neurosurgery* 51, 460–466.
- Del Bigio M. R., Wilson M. J. and Enno T. (2003) Chronic hydrocephalus in rats and humans: white matter loss and behaviour changes. *Ann. Neurol.* 53, 337–346.
- Deo-Narine V., Gomez D. G., Vullo T., Manzo R. P., Zimmerman R. D., Deck M. D. and Cahill P. T. (1994) Direct in vivo observation of transventricular absorption in the hydrocephalic dog using magnetic resonance imaging. *Invest. Radiol.* 29, 287–293.
- Di Rocco C., Di Trapani G., Pettorossi V. E. and Caldarelli M. (1979) On the pathology of experimental hydrocephalus induced by artificial increase in endoventricular CSF pulse pressure. *Childs Brain* 5, 81–95.
- Dröge W. and Schipper H. M. (2007) Oxidative stress and aberrant signaling in aging and cognitive decline. *Aging Cell.* 6, 361–370.
- Ebisu T., Naruse S., Horikawa Y., Ueda S., Tanaka C., Uto M., Umeda M. and Higuchi T. (1993) Discrimination between different types of white matter edema with diffusion-weighted MR imaging. *J. Magn. Reson. Imaging* 3, 863–868.
- Edsbagge M., Tisell M., Jacobsson L. and Wikkelso C. (2004) Spinal CSF absorption in healthy individuals. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, 1450–1455.
- Edwards R. J., Dombrowski S. M., Luciano M. G. and Pople I. K. (2004) Chronic hydrocephalus in adults. *Brain Pathol.* **14**, 325–336.
- Egawa T., Mishima K., Egashira N., Fukuzawa M., Abe K., Yae T., Iwasaki K. and Fujowara M. (2002) Impairment of spatial memory in kaolin-induced hydrocephalic rats associated with changes in the hippocampal cholinergic and noradrenergic contents. *Behav. Brain Res.* **129**, 31–39.
- Eklund A., Smielewski P., Chambers I., Alperin N., Malm J., Czosnyka M. and Marmarou A. (2007) Assessment of cerebrospinal fluid outflow resistance. *Med. Biol. Eng. Comput.* 45, 719–735.
- Fukuhara T., Vorster S. J. and Luciano M. G. (2000) Risk factors for failure of endoscopic third ventriculostomy for obstructive hydrocephalus. *Neurosurgery* 46, 1100–1109.
- Fukushima N., Yokouchi K., Kawagishi K., Ren G., Higashiyama F. and Moriizumi T. (2003) Proliferating cell populations in experimentally-induced hydrocephalus in developing rats. *J. Clin. Neurosci.* **10**, 334–337.
- Golomb J., Wisoff J., Miller D. C., Boksay I., Kluger A., Weiner H., Salton J. and Graves W. (2000) Alzheimer's disease comorbidity in normal pressure hydrocephalus: prevalence and shunt response. *J. Neurol. Neurosurg. Psychiatry* 68, 778–781.
- Grady M. S., McLaughlin M. R., Christman C. W., Valadka A. B., Fligner C. L. and Povlishock J. T. (1993) The use of antibodies targeted against the neurofilament subunits for the detection of diffuse axonal injury in humans. *J. Neuropathol. Exp. Neurol.* 52, 143–152.

- Hakim S. and Adams R. D. (1965) The special clinical problem of symptomatic hydrocephalus with normal cerebrospinal fluid pressure. Observations on cerebrospinal fluid hydrodynamics. *J. Neurol. Sci.* 2, 307–327.
- Hakim C. A., Hakim R. and Hakim S. (2001) Normal pressure hydrocephalus. *Neurosurg. Clin. N. Am.* 12, 761–773.
- Haubrich C., Czosnyka Z., Lavinio A., Smielewski P., Diehl R. R., Pickard J. D. and Czosnyka M. (2007) Is there a direct link between cerebrovascular activity and cerebrospinal fluid pressure– volume compensation? *Stroke* 38, 2677–2680.
- Hellström P., Edsbagge M., Archer T., Tisell M., Tullberg M. and Wikkelsø C. (2007) The neuropsychology of patients with clinically diagnosed idiopathic normal pressure hydrocephalus. *Neurosurgery* 61, 1219–1226.
- Hertz L. (1979) Functional interactions between neurons and astrocytes. I. Turnover and metabolism of putative amino acid transmitters. *Prog. Neurobiol.*, 13, 277–323.
- Hochwald G. M. (1985) Animal models of hydrocephalus: recent developments. Proc. Soc. Exp. Biol. Med. 178, 1–11.
- Iddon J. L., Morgan D. J., Loveday C., Sahakian B. J. and Pickard J. D. (2004) Neuropsychological profile of young adults with spina bifida with or without hydrocephalus. *J. Neurol. Neurosurg. Psychiatry* 75, 1112–1118.
- Khan O. H., Enno T. L. and Del Bigio M. R. (2006) Brain damage in neonatal rats following kaolin induction of hydrocephalus. *Exp. Neurol.* 200, 311–320.
- Kirino T. (2000) Delayed neuronal death. Neuropathology 20, S95-S97.
- Klinge P., Muhlendyck A., Lee S., Luedemann W., Groos S., Samii M. and Brinker T. (2002) Temporal and regional profile of neuronal and glial cellular injury after induction of kaolin hydrocephalus. *Acta Neurochir.* 81, S275–S277.
- Klinge P., Samii A., Muhlendyck A., Visnyei K., Meyer G. J., Walter G. H., Silverberg G. D. and Brinker T. (2003) Cerebral hypoperfusion and delayed hippocampal response after induction of adult kaolin hydrocephalus. *Stroke* 34, 193–199.
- Klinge P., Samii A., Niescken S., Brinker T. and Silverberg G. D. (2006) Brain amyloid accumulates in aged rats with kaolin-induced hydrocephalus. *Neuroreport* 17, 657–660.
- Kondziella D., Luedemann W., Brinker T., Sletvold O. and Sonnewald U. (2002) Alterations in brain metabolism, CNS morphology and CSF dynamics in adult rats with kaolin-induced hydrocephalus. *Brain Res.* 927, 35–41.
- Kondziella D., Qu H., Luedemann W., Brinker T., Sletvold O. and Sonnewald U. (2003) Astrocyte metabolism is disturbed in the early development of experimental hydrocephalus. *J. Neurochem.* 85, 274–281.
- Krauss J. K. and Halve B. (2004) Normal pressure hydrocephalus: survey on contemporary diagnostic algorithms and therapeutic decision-making in clinical practice. *Acta Neurochir.* 146, 379– 388.
- Kudo T., Mima T., Hashimoto R. et al. (2000) Tau protein is a potential biological marker for normal pressure hydrocephalus. *Psychiatry Clin. Neurosci.* 54, 199–202.
- Larsson A., Bergh A. C., Bilting M., Arlig A., Jacobsson L., Stephensen H. and Wikkelso C. (1994) Regional cerebral blood flow in normal pressure hydrocephalus: diagnostic and prognostic aspects. *Eur. J. Nucl. Med.* 21, 118–123.
- Lehmann G. L., Gradilone S. A. and Marinelli R. A. (2004) Aquaporin water channels in central nervous system. *Curr. Neurovasc. Res.* 1, 293–303.
- Luedemann W., Kondziella D., Tienken K., Klinge P., Brinker T. and Berens von Rautenfeld D. (2002) Spinal cerebrospinal fluid pathways and their significance for the compensation of kaolinhydrocephalus. *Acta Neurochir.* 81, 271–273.

- Malm J., Kristensen B., Ekstedt J., Adolfsson R. and Wester P. (1991) CSF monoamine metabolites, cholinesterases and lactate in the adult hydrocephalus syndrome (normal pressure hydrocephalus) related to CSF hydrodynamic parameters. J. Neurol. Neurosurg. Psychiatry 54, 252–259.
- Malm J., Kristensen B., Stegmayr B., Fagerlund M. and Koskinen L. O. (2000) Three-year survival and functional outcome of patients with idiopathic adult hydrocephalus syndrome. *Neurology* 55, 576–578.
- Mamo H. L., Meric P. C., Ponsin J. C., Rey A. C., Luft A. G. and Seylaz J. A. (1987) Cerebral blood flow in normal pressure hydrocephalus. *Stroke* 18, 1074–1080.
- Manley G. T., Fujimura M., Ma T. H., Noshita N., Filiz F., Bollen A. W., Chan P. and Verkman A. S. (2000) Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. *Nature Med.*, 6, 159–163.
- Mao X., Enno T. L. and Del Bigio M. R. (2006) Aquaporin 4 changes in rat brain with severe hydrocephalus. *Eur. J. Neurosci.* 23, 2929–2936.
- del Mar Matarín M., Pueyo R., Poca M. A., Falcón C., Mataró M., Bargalló N., Sahuquillo J. and Junqué C. (2007) Post-surgical changes in brain metabolism detected by magnetic resonance spectroscopy in normal pressure hydrocephalus: results of a pilot study. J. Neurol. Neurosurg. Psychiatry 78, 760–763.
- Marmarou A., Young H. F., Aygok G. A., Sawauchi S., Tsuji O., Yamamoto T. and Dunbar J. (2005) Diagnosis and management of idiopathic normal-pressure hydrocephalus: a prospective study in 151 patients. J. Neurosurg. 102, 987–997.
- Massicotte E. M., Buist R. and Del Bigio M. R. (2000) Altered diffusion and perfusion in hydrocephalic rat brain: a magnetic resonance imaging analysis. J. Neurosurg. **92**, 442–447.
- Miwa S., Inagaki C., Fujiwara M. and Takaori S. (1982) The activities of noradrenergic and dopaminergic neuron systems in experimental hydrocephalus. J. Neurosurg. 57, 67–73.
- Miyamoto J., Imahori Y. and Mineura K. (2007) Cerebral oxygen metabolism in idiopathic-normal pressure hydrocephalus. *Neurol. Res.* **29**, 830–834.
- Momjian S., Czosnyka Z., Czosnyka M. and Pickard J. D. (2004) Link between vasogenic waves of intracranial pressure and cerebrospinal fluid outflow resistance in normal pressure hydrocephalus. *Br. J. Neurosurg.* 18, 56–61.
- Newton H., Pickard J. D. and Weller R. O. (1989) Normal pressure hydrocephalus and cerebrovascular disease: findings of postmortem. J. Neurol. Neurosurg. Psychiatry 52, 804.
- Norenberg M. D. and Martinez-Hernandez A. (1979) Fine structural localization of glutamine synthetase in astrocytes of rat brain. *Brain Res.* 161, 303–310.
- Owler B. K. and Pickard J. D. (2001) Normal pressure hydrocephalus and cerebral blood flow: a review. *Acta Neurol. Scand.* 104, 325– 342.
- Owler B. K., Momjian S., Czosnyka Z. et al. (2004) Normal pressure hydrocephalus and cerebral blood flow: a PET study of baseline values. J. Cereb. Blood Flow Metab. 24, 17–23.
- Papadopoulos M. C. and Verkman A. S. (2005) Aquaporin-4 gene disruption in mice reduces brain swelling and mortality in pneumococcal meningitis. J. Biol. Chem. 280, 13906–13912.
- Pellerin L. (2005) How astrocytes feed hungry neurons. *Mol. Neurobiol.* 32, 59–72.
- Poca M. A., Mataró M., Sahuquillo J., Catalán R., Ibañez J. and Galard R. (2001) Shunt related changes in somatostatin, neuropeptide Y, and corticotropin releasing factor concentrations in patients with normal pressure hydrocephalus. J. Neurol. Neurosurg. Psychiatry 70, 298–304.
- Relkin N., Marmarou A., Klinge P., Bergsneider M. and Black P. M. (2005) Diagnosing idiopathic normal-pressure hydrocephalus. *Neurosurgery* 57, S4–S16.

- Rubenstein E. (1998) Relationship of senescence of cerebrospinal fluid circulatory system to dementias of the aged. *Lancet* **351**, 283–285.
- Savolainen S., Paljärvi L. and Vapalahti M. (1999) Prevalence of Alzheimer's disease in patients investigated for presumed normal pressure hydrocephalus: a clinical and neuropathological study. *Acta Neurochir.* 141, 849–853.
- Savolainen S., Hurskainen H., Paljarvi L., Alafuzoff I. and Vapalahti M. (2002) Five-year outcome of normal pressure hydrocephalus with or without a shunt: predictive value of the clinical signs, neuropsychological evaluation and infusion test. *Acta Neurochir*. 144, 515–523.
- Shen X. Q., Miyajima M., Ogino I. and Arai H. (2006) Expression of the water-channel protein aquaporin 4 in the H-Tx rat: possible compensatory role in spontaneously arrested hydrocephalus. J. Neurosurg. 105, S459–S464.
- Silverberg G. D., Mayo M., Saul T., Rubenstein E. and McGuire D. (2003) Alzheimer's disease, normal-pressure hydrocephalus, and senescent changes in CSF circulatory physiology: a hypothesis. *Lancet Neurol.* 2, 506–511.
- Sonnewald U. and Kondziella D. (2003) Neuronal glial interaction in different neurological diseases studied by ex vivo 13C NMR spectroscopy. *NMR Biomed.* 16, 424–429.
- Stein S. C., Burnett M. G. and Sonnad S. S. (2006) Shunts in normalpressure hydrocephalus: do we place too many or too few? *J. Neurosurg.* 105, 815–822.
- Sutton L. N., McLaughlin A. C., Kemp W., Schnall M. D., Cho B. K., Langfitt T. W. and Chance B. (1987) Effects of increased ICP on brain phosphocreatine and lactate determined by simultaneous ¹H and ³¹P NMR spectroscopy. J. Neurosurg. 67, 381–386.
- Tarkowski E., Tullberg M., Fredman P. and Wikkelso C. (2003) Normal pressure hydrocephalus triggers intrathecal production of TNFalpha. *Neurobiol. Aging* 24, 707–714.
- Tarnaris A., Watkins L. D. and Kitchen N. D. (2006) Biomarkers in chronic adult hydrocephalus. *Cerebrospinal Fluid Res.* 3, 11.
- Tashiro Y., Drake J. M., Chakrabortty S. and Hattori T. (1997a) Functional injury of cholinergic, GABAergic and dopaminergic systems in the basal ganglia of adult rat with kaolin-induced hydrocephalus. *Brain Res.* 770, 45–52.
- Tashiro Y., Chakrabortty S., Drake J. M. and Hattori T. (1997b) Progressive loss of glutamic acid decarboxylase, parvalbumin, and calbindin D28K immunoreactive neurons in the cerebral cortex and hippocampus of adult rat with experimental hydrocephalus. *J. Neurosurg.* 86, 263–271.
- Tisell M., Tullberg M., Månsson J. E., Fredman P., Blennow K. and Wikkelsø C. (2004) Differences in cerebrospinal fluid dynamics do not affect the levels of biochemical markers in ventricular CSF from patients with aqueductal stenosis and idiopathic normal pressure hydrocephalus. *Eur. J. Neurol.* 11, 17–23.
- Tisell M., Hoglund M. and Wikkelso C. (2005) National and regional incidence of surgery for adult hydrocephalus in Sweden. Acta Neurol. Scand. 112, 72–75.
- Tisell M., Hellstrom P., Ahl-Borjesson G., Barrows G., Blomsterwall E., Tullberg M. and Wikkelso C. (2006) Long-term outcome in 109 adult patients operated on for hydrocephalus. *Br. J. Neurosurg.* 20, 214–221.

- Tullberg M., Rosengren L., Blomsterwall E., Karlsson J. E. and Wikkelso C. (1998) CSF neurofilament and glial fibrillary acidic protein in normal pressure hydrocephalus. *Neurology* **50**, 1122–1127.
- Tullberg M., Mansson J. E., Fredman P., Lekman A., Blennow K., Ekman R., Rosengren L. E., Tisell M. and Wikkelso C. (2000) CSF sulfatide distinguishes between normal pressure hydrocephalus and subcortical arteriosclerotic encephalopathy. *J. Neurol. Neurosurg. Psychiatry* 69, 74–81.
- Tullberg M., Jensen C., Ekholm S. and Wikkelso C. (2001) Normal pressure hydrocephalus: vascular white matter changes on MR images must not exclude patients from shunt surgery. *AJNR Am. J. Neuroradiol.* 22, 1665–1673.
- Tullberg M., Hultin L., Ekholm S., Mansson J. E., Fredman P. and Wikkelso C. (2002) White matter changes in normal pressure hydrocephalus and Binswanger disease: specificity, predictive value and correlations to axonal degeneration and demyelination. *Acta Neurol. Scand.* **105**, 417–426.
- Tullberg M., Hellström P., Piechnik S. K., Starmark J. E. and Wikkelsö C. (2004) Impaired wakefulness is associated with reduced anterior cingulate CBF in patients with normal pressure hydrocephalus. *Acta Neurol. Scand.* **110**, 322–330.
- Tullberg M., Blennow K., Månsson J. E., Fredman P., Tisell M. and Wikkelsö C. (2007) Ventricular cerebrospinal fluid neurofilament protein levels decrease in parallel with white matter pathology after shunt surgery in normal pressure hydrocephalus. *Eur. J. Neurol.* 14, 248–254.
- Vale F. A. and Miranda S. J. (2002) Clinical and demographic features of patients with dementia attended in a tertiary outpatient clinic. *Arg. Neuropsiquiatr.* **60**, 548–552.
- Verkhratsky A. and Toescu E. C. (2006) Neuronal-glial networks as substrate for CNS integration. J. Cell. Mol. Med. 10, 826–836.
- Verkman A. S., Binder D. K., Bloch O., Auguste K. and Papadopoulos M. C. (2006) Three distinct roles of aquaporin-4 in brain function revealed by knockout mice. *Biochim. Biophys. Acta* 1758, 1085– 1093.
- Voelz T., Kondziella D., Berens von Rautenfeld D., Brinker T. and Luedemann W. (2007) A ferritin tracer study of compensatory spinal CSF outflow pathways in kaolin-induced hydrocephalus. *Acta Neuropathol.* **113**, 569–575.
- Weller R. O., Wisniewski H., Shulman K. and Terry R. D. (1971) Experimental hydrocephalus in young dogs: histological and ultrastructural study of the brain tissue damage. J. Neuropathol. Exp. Neurol. 30, 613–626.
- Wikkelso C., Andersson H., Blomstrand C., Lindqvist G. and Svendsen P. (1986) Normal pressure hydrocephalus. Predictive value of the cerebrospinal fluid tap-test. *Acta Neurol. Scand.* **73**, 566–573.
- Wikkelso C., Ekman R., Westergren I. and Johansson B. (1991) Neuropeptides in cerebrospinal fluid in normal-pressure hydrocephalus and dementia. *Eur. Neurol.* 31, 88–93.
- Zador Z., Bloch O., Yao X. and Manley G. T. (2007) Aquaporins: role in cerebral edema and brain water balance. *Prog. Brain Res.* 161, 185–194.
- Zekry D., Duyckaerts C., Belmin J., Geoffre C., Moulias R. and Hauw J. J. (2003) Cerebral amyloid angiopathy in the elderly: vessel walls changes and relationship with dementia. *Acta Neuropathol.* 106, 367–373.